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Abstract
We show how to produce algorithmically gravity solutions in massive IIA (as
infinitesimal first-order perturbations in the Romans mass parameter) dual to
assigned conformal field theories. We illustrate the procedure on a family of
Chern–Simons-matter conformal field theories that we recently obtained from
the N = 6 theory by waiving the condition that the levels sum up to zero.

PACS numbers: 11.25.Tq, 11.15.Yc

1. Introduction

The Romans mass parameter of IIA supergravity [1] is understood from a modern perspective
[2] as the Ramond–Ramond (RR) flux F0. In spite of this, it still retains some aura of mystery.
For example, its interpretation in M-theory is still challenging (although see for example
[3, 4]). Also, the branes that source it are D8-branes, which have the peculiarity of generating
a backreaction that grows with distance (since there is only one direction transverse to them).

On spaces with boundary conditions with an AdS factor, the AdS/CFT correspondence
[5] gives a non-perturbative understanding of string theory. One can then hope to get
a non-perturbative understanding of the parameter F0 on such backgrounds. Some non-
supersymmetric AdS vacua with F0 �= 0 were proposed already in [1]; supersymmetric ones
were found much more recently, starting from [6] and more recently in [7–9].

It was also anticipated some time ago [10] that vacua with Romans mass would be dual
to field theories with a Chern–Simons term. Recently, many Chern–Simons-matter conformal
field theories (CFTs) have found their gravity dual in string theory, starting with the N = 6
example on AdS4 × CP

3 in [11]. Those gravity duals do not involve the parameter F0.
However, it was later shown in [12] that the gauge/gravity duality in [11] could be deformed
by adding F0.

In fact, we found in [12] that several ways of introducing F0 were possible, yielding CFTs
with varying amounts of supersymmetry, from N = 0 to N = 3. Two theories, with N = 0
and N = 1, had large flavor symmetries (SO(6) and SO(5) respectively). This helped us find
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their gravity duals, which were presented already in [12]. The N = 2 and N = 3 theories had
smaller flavor symmetry groups, and their gravity dual could not be immediately identified.

In this paper, we partially fill that gap by finding those duals as infinitesimal first-order
deformations of the N = 6 solution on AdS4 × CP

3. To see that the solutions are the right
gravity duals, one can at first match the bosonic symmetry group, the amount of supercharges
and the moduli spaces of vacua. One finds, however, that all these matches derive from the
match of the Abelian superpotential, which actually also guarantees that the solutions are the
correct duals, as we will now explain.

In these backgrounds, even a single D2-brane probe feels an effective superpotential W .
D2, then, cannot move freely: it will only preserve supersymmetry along some subspace of
CP

3. By AdS/CFT, W should also be the superpotential for the field theory when the gauge
group is Abelian. W indeed does not vanish for the N = 2 and N = 3 theories proposed
in [12] (unlike for the N = 6 theory of [11]). In four dimensions, an example of a family
of theories whose abelianized superpotential does not vanish is given by the Leigh–Strassler
theories [13]; in their gravity dual, D3-brane probes only preserve supersymmetry along some
locus. Infinitesimal perturbations of the AdS5×S5 background with these properties have been
obtained in [14] at first order and in [15] at second and third order. (For a particular type of
Leigh–Strassler theory, the gravity dual can actually be found exactly by solution-generating
symmetries [16].)

After identifying the superpotential felt by a single D2-brane probe with the Abelian
superpotential of the field theory, it turns out that the first-order perturbation4 in F0 of the
gravity solution can be found with no extra Ansatz or choice. This is quite general. Suppose
one has a supersymmetric solution with F0 = 0, whose CFT dual is known. Suppose one
knows that a deformation exists, with a superpotential that does not vanish when abelianized,
and with F0 �= 0. (The meaning of the latter condition on the field theory side is discussed in
[12, 17].) We observe in this paper that, in such a situation, the conditions for the existence
of a supersymmetric deformation of the background, at first order in F0, leave no room to
any guesswork. There is a clear procedure that leads to a solution, provided of course one
starts with a superpotential which is appropriate for a CFT. This procedure is the AdS4 analog
of [14], except that there are non-trivial restrictions on the superpotential already at first
order. The conditions for AdS4 solutions are more restrictive than the ones for AdS5; for
example, the Bianchi identities do not follow from supersymmetry as for AdS5 solutions in
IIB [18].

So, to summarize, we outline a general procedure to deform gauge/gravity duals by an
infinitesimal amount of Romans mass F0, and we illustrate it by finding the perturbations
of the N = 6 solution on AdS4 × CP

3 [19, 20] dual to the N = 2 and N = 3 theories
discussed in [12]. In section 2 we review those theories. In section 3 we review the conditions
for supersymmetry, and we isolate the function that plays the role of the superpotential for
a probe D2-brane. In section 4 we outline the general procedure for finding infinitesimal F0

perturbations; in section 5 we apply it to the N = 2 and N = 3 solutions on AdS4 × CP
3.

2. Review of the field theories

Although our procedure is general, to fix ideas we will start by introducing the field theories
which will provide its concrete applications in section 5.

4 F0 is quantized in string theory, but it can still be small compared to the other fluxes in the unperturbed solution.
In view of this it makes sense to work in perturbation theory and to postpone consideration of the flux quantization
conditions to when one has the full solution.
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In [12], we introduced several Chern–Simons-matter theories. The ones of interest for
this paper consist of an N = 2 Chern–Simons theory with gauge group U(N)×U(N), coupled
to N = 2 chiral superfields Ai, Bi and vector superfields V1, V2. The action is

S = k1

4π
SCS,N=2(V1) +

k2

4π
SCS,N=2(V2)

+
∫

d4θ Tr
(
e−V1A

†
i eV2Ai + e−V1Bi eV2B

†
i

)
+

∫
d2θ WN=2, (2.1)

where

WN=2 = c1Tr(BiAi)
2 + c2Tr(AiBi)

2. (2.2)

There is a renormalization group flow in the space of the coefficients c1, c2. If k1 + k2 = 0,
there is a fixed point at c1 = 2π

k1
, c2 = 2π

k2
: it is N = 6 of [11]. If k1 + k2 is small but �ki , it

was argued in [12] that a fixed point will still exist for some value of ci, although for a different
value of the coefficients ci.

In fact, we argued that there is a fixed line that passes through two points with enhanced
symmetries. In general, the theory (2.1) has N = 2 supersymmetry, and SU(2) of flavor
symmetry (as well as the R-symmetry SO(2)R). For

c1 = 2π

k1
, c2 = 2π

k2
, (2.3)

supersymmetry is enhanced to N = 3, and hence we have SU(2) × SO(3)R of R-symmetry. It
was argued in [12] that the line of fixed point intersects this locus. Also, for

c1 = −c2, (2.4)

supersymmetry remains N = 2, but the flavor symmetry gets enhanced to SU(2) × SU(2)
(×SO(2)R). The line of fixed points should intersect this locus as well.

General arguments predict [12, 17] that the gravity dual of a Chern–Simons-matter theory
should have Romans mass

F0 = k1 + k2, (2.5)

in conventions such that 2πls = 1. In this paper, we will confirm this picture by finding the
gravity dual to these theories, as an infinitesimal perturbation in F0 of the N = 6 solution on
AdS4 × CP

3. In finding these duals, we have been guided by comparing the superpotential in
(2.2) with the superpotential of D2 probes, as we now explain.

Even in the Abelian case, the superpotential (2.2) is non-vanishing. In the gravity dual,
it should be reproduced by the superpotential felt by a single D2 probe extended along the
three-dimensional Minkowski and at fixed radius (in Poincaré coordinates). Usually, a single
brane probe which is point like in the internal space and in the radial direction does not feel any
superpotential, and the moduli space of its world-volume theory is unrestricted. For example,
for AdS5 ×SE5, where SE5 is a Sasaki–Einstein five-manifold, the moduli space of a D3 probe
is the cone over SE5, namely a conical Calabi–Yau, which has real dimension 6. Likewise,
for AdS4× a tri-Sasaki–Einstein, Sasaki–Einstein or weakly G2 seven-manifold, the moduli
space of an M2 probe is the entire cone over those manifolds—a conical space with special
holonomy and of dimension 8.

Going back to AdS5, an example of a background in which a D3 brane probe is not able
to move freely is the Lunin–Maldacena background [16], dual to one of the Leigh–Strassler
N = 1 gauge theories. In that case, the moduli space of D3 consists of three copies of
C intersecting at the origin, which reproduces the fact that, in the field theory, there is a
superpotential even at the Abelian level. In fact, it is not difficult to show that a D3 brane
probe can reproduce this Abelian superpotential.
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In our three-dimensional field theories we expect a similar phenomenon as in the Leigh–
Strassler theories: the Abelian version of the superpotential (2.2) will be reproduced in the
gravity dual by a D2 domain wall. This fact will help us find the gravity duals: in section 3.4
we will derive a general expression for the D2 superpotential in terms of certain differential
forms that characterize the gravity solution, which we will now introduce.

3. Supersymmetry equations

We will review here the conditions for unbroken supersymmetry in the most general setting,
using the language of generalized complex geometry.

3.1. The equations in general

Let us consider a spacetime of the warped-product form AdS4 × M6, which means that the
metric is of the form ds2

10 = e2A ds2
AdS4

+ ds2
6 . Then this spacetime is supersymmetric in

type IIA5 if and only if [21, section 7]

• There exists an SU(3) × SU(3) structure φ± on M6. Here, φ± are polyforms which are
pure spinors for Clifford(6, 6), and which satisfy

(φ+, φ̄+) = (φ−, φ̄−), (φ+, X · φ−) = 0 = (φ+, X · φ̄−) (3.1)

for any X ∈ T ⊕ T ∗. We have used the Chevalley internal product between internal
forms: (A,A′) ≡ (A ∧ A′)6, λ(A) ≡ (−1)Int( deg(A)

2 )A.
• There exist a closed three-form H and an even-degree polyform F = ∑

k F2k (the sum of
all the internal fluxes):

dH φ+ = −2μ e−A Re φ−, dH (eA Im φ−) = −3μ Im φ+ + ∗ e4Aλ(F ), dH F = 0,

(3.2)

where � = −3μ2 is the cosmological constant, and dH ≡ (d −H∧). The last equation is
actually the Bianchi identity, which can be generalized to contain δ-function-like sources
(something we will not do in this paper).

If these equations can be solved, φ± determine a metric g, a b-field, a dilaton φ and two
six-dimensional Weyl spinors η

1,2
+ . The formulas for the metric and b-field in terms of φ± are

a bit involved in general [22], but we will see in section 3.2 what they give for the cases that
we are interested in. The dilaton φ is determined by

e6A−2φ vol6 = (φ+, φ̄+) (3.3)

where vol6 is the volume form determined by the metric g; note that this is not an extra equation
to solve; rather, it determines the dilaton once the supersymmetry equations have been solved.
The spinors are determined by

φ± = e−b∧η1
+ ⊗ η

2 †
± , (3.4)

where η
1,2
− ≡ (

η
1,2
+

)∗
, in which we have associated a differential form with a bispinor. One can

show [21, section 3] that one can find η
1,2
+ such that (3.4) is true for any SU(3)×SU(3) structure

φ±. (This fact is crucial in showing that conditions (3.1) and (3.2) above are equivalent to the
original fermionic equations for supersymmetry.)

We will call the b-field determined by φ± ‘intrinsic’. A slight imprecision in (3.2) is
that only if this intrinsic b vanishes, the ∗ in (3.2) is the usual Hodge star. This is not a big

5 The conditions for type IIB, that we do not need here, are obtained by φ+ ↔ φ−.
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problem, because one can always obtain a pure spinor pair with vanishing intrinsic b by the
action φ± → ebφ±.

Moreover, there is also an alternative, equivalent formulation of (3.2) in which ∗ does not
appear at all. It was found in [23]; here we write a more practical version:

dH0φ+ = −2μ e−A Re φ−, J+ · dH0(e
−3A Im φ−) = −5μ e−4A Re φ+ + F 0, dH0F

0 = 0.

(3.5)

Here J+· is an operator that depends on φ+ alone; it is explained at length in [23]. In some
cases, its action is easier to compute than the whole Hodge star. The reason for the appearance
of a subscript 0 on H in (3.5) is that the physical H also receives contribution from b determined
via (3.4):

H = H0 + db. (3.6)

Note, however, that it is not necessary to compute b in order to solve equations (3.5). Similarly,
the physical RR fields are

F = ebF 0, (3.7)

which obey

dH F = 0. (3.8)

In this paper, we will actually be looking for solutions with extended supersymmetry,
namely N = 2 and N = 3. This simply means that there should be an SO(N ) worth of
SU(3)×SU(3) structures, all obeying (3.2) (or (3.5)) with the same physical fields: the metric
g, the dilaton φ and the fluxes H, F. We will see concretely how this works in section 4.

3.2. Solving the algebraic constraints

We will now analyze the algebraic part of the supersymmetry equations (3.1).
In full generality, there are three cases to consider. Let us call the type of a pure spinor

φ = ∑
k�k0

φk the smallest degree k0 that appears in the sum; in other words, φ only contains
forms of degree type (φ) or higher. It turns out that the type of a pure spinor in dimension 6
can be at most 3. There are then three cases.

(i) φ+ has type 0, and φ− has type 3. This is usually referred to as the ‘SU(3) structure’ case,
for reasons that will become clear soon.

(ii) φ+ has type 0, and φ− has type 1. This is the most generic case, and for this reason it is
sometimes just called ‘SU(3) × SU(3)’, or also ‘intermediate SU(2) structure’.

(iii) φ+ has type 2, and φ+ has type 1. This is called the ‘static SU(2) structure’ case.

In this paper, we are considering small deformations of a solution of type SU(3). This
will fall in the second, generic SU(3) × SU(3), case. Hence, we will now review briefly the
solution of the algebraic constraint in the SU(3) structure case, then move on to the generic
case, which is our real interest and we will not pay any attention at all to the static SU(2)
structure case.

In the SU(3) structure case, the condition of purity on each φ± separately determines (up
to a b-transform)

φ+ = ρ eiθ e−iJ , φ− = ρ 
, (3.9)

with ρ being a complex function, J a non-degenerate two-form and 
 a decomposable three-
form (one that can be locally written as wedge of three one-forms) such that 
 ∧ 
̄ is never
zero6. The constraint (3.1) then reduces easily to

J ∧ 
 = 0, J 3 = 3
4 i
 ∧ 
̄. (3.10)

6 We are including (φ, φ̄) �= 0 in the definition of purity.
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These equations define an SU(3) structure, which justifies the name given earlier to case 1.
We mentioned after (3.4) that any pair determines an ‘intrinsic’ b; in this case it is zero. It is
more laborious, but also possible, to see that any SU(3)×SU(3) structure determines a metric
[21, 22]. In this case, this works as follows. 
, being decomposable, determines an almost
complex structure I (it is the one such that 
 is a (3, 0)-form). Then we can just define the
metric as g = JI . Condition (3.10) implies that g defined in this way is symmetric.

We now come to the case of interest in this paper, namely case 2. To find the solution
to this constraint, one can use [24–26] two different internal spinors η1

+ �= η2
+ in (3.4); as we

remarked earlier, any solution of (3.1) can be written as in (3.4), so there is no loss of generality
in proceeding this way. One can also [26] solve directly the constraints (3.1). Either way, one
gets

φ+ = ρ eiθ exp

[
− i

cos(ψ)
j +

1

2 tan2(ψ)
v ∧ v̄

]
, (3.11a)

φ− = ρv ∧ exp

[
1

sin(ψ)

(
iRe ω − 1

cos(ψ)
Im ω

)]
, (3.11b)

for some (varying) angle ψ , real function ρ, one-form v and two-forms ω, j satisfying

ω2 = 0, ω ∧ ω̄ = 2j 2, j ∧ ω = 0, (3.12)

which mean that ω, j define an SU(2) structure. Actually, from the constraint (3.1), one would
get (3.12) wedged with v ∧ v̄, but one can show [26, section 3.2] that these can be dropped
without any loss of generality. The pair (3.11) has a non-zero intrinsic b-field (the one defined
by (3.4)):

b = tan(ψ) Im ω. (3.13)

Note the difference with the SU(3) structure case (3.9); there, the b-field of the pair is zero when
the exponent of φ+ is purely imaginary. For (3.11), the exponent of φ+ is purely imaginary, but
the b-field is non-vanishing and is given by (3.13). As we mentioned above, an SU(3)×SU(3)

structure also defines a metric. In this case, we get

ds2 = −j(Im ω)−1 Re ω +
1

tan2(ψ)
vv̄, (3.14)

where (Im ω)−1 is defined by inverting Im ω after restricting on the subspaces of the tangent
space orthogonal to v under the natural pairing between forms and vectors. Finally, from
equation (3.3), we see that the dilaton φ is determined by

eφ = e3A

ρ
(3.15)

for both cases considered in this subsection: (3.9) and (3.11).

3.3. The differential conditions

In this subsection we will take a first look at the differential equations for supersymmetry
(3.2), both for the SU(3) structure case and for the general case.

The SU(3) structure case has been analyzed in [27]. One can also derive the same
conditions from (3.2) [21] or (3.5). If we plug (3.9) in (3.5), using J+ = J ∧ −J� (for more
details see [22]), we see immediately that F0 = 5μ cos(θ) e−4A. In this paper, we want to
perturb SU(3) structure solutions with F0 = 0 into SU(3) × SU(3) structure solutions with

6
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F0 �= 0. Hence, we only need to give the differential equations for the SU(3) structure case
when F0 = 0. For that reason, we take the angle in (3.9) to be

θ = π/2 (SU(3)), (3.16)

and we obtain

d(3A − φ) = 0, dJ = −2μ e−A Re 
;
F2 = −J−1�d(e−3A Im 
) + 5μ e−4AJ, F6 = 1

2μ e−4AJ 3,
(3.17)

with H = F0 = F4 = 0. One could also obtain these equations from M-theory. Note
that7 nothing prevents at this point the warping A (and hence the dilaton φ) from being non-
constant, in contrast to the case F0 �= 0, in which constancy of F0 (because of its Bianchi
identity) implies constancy of A. Even though the procedure we outline later for first-order
deformations does not require the warping A of the undeformed SU(3) structure solution to
be constant, it will be so for the explicit examples of section 5.

We will now look at the SU(3) × SU(3) structure case. We will actually only solve the
supersymmetry equations at first order in perturbation theory; a full analysis of the system
(3.2) in the SU(3) × SU(3) structure case is not really necessary. Even so, the study of the
SU(3)×SU(3) structure case is of independent interest; not many attempts have been made so
far for a negative cosmological constant (for a recent study, using a particular ‘singlet Ansatz’,
see [28]). We collect here some of the relevant formulas.

We will first look at the first equation in (3.2) or (3.5), and substitute expression (3.11)
for the pure spinors.

The one-form part says that

ρ = 1

sin(θ)
, Re v = eA

2μ sin(θ)
dθ. (3.18)

The three-form part gives, remembering that we choose α to be purely imaginary:

H0 = −d(cot(θ)Jψ), (3.19)

d

(
1

sin(θ)
Jψ

)
= 2μ e−A

sin(ψ)

(
Im v ∧ Re ω + Re v ∧ Im ω

cos(ψ)

)
, (3.20)

where we have introduced

Jψ ≡ j

cos(ψ)
+ i

v ∧ v̄

2 tan2(ψ)
(3.21)

which is none else than i times the exponent of (3.11a). Finally, the five-form part can be
shown to follow from the one- and three-form parts (3.18) and (3.20).

Equation (3.19) suggests that we define

B0 = − cot(θ)Jψ, (3.22)

which is such that H0 = dB0. We have to remember, however, that the physical B-field also
contains another contribution, as we saw in (3.6) and (3.13). Hence, we get

B = − cot(θ)Jψ + tan(ψ) Im ω, (3.23)

up to closed two-forms.
As for the second (and third) equation in (3.2) or (3.5), we will look at them directly

in perturbation theory, since the expressions we obtained are lengthy and not particularly

7 We thank D Martelli and J Sparks for discussions on this point.

7
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illuminating. The only flux that appears to have a reasonably compact expression is F0. Using
the formula for J+ relevant for the pure spinor given in (3.11a),

J+ = Jψ ∧ −J−1
ψ �, (3.24)

and after some manipulations we compute

F0 = −J−1
ψ �d(ρ e−3A Im v) + 5μ e−4A cot(θ). (3.25)

The expressions for the other fluxes are more conveniently extracted directly from (3.2).
Again, we will see them explicitly in perturbation theory later.

3.4. Superpotential for D2 probes

We remarked in section 2 that the Abelian version of the superpotential (2.2) should be
reproduced by a D2 domain wall, point like in the internal manifold M6 and at fixed radius
in Poincaré coordinates. In this subsection, we compute this superpotential in terms of pure
spinors, in a way similar to [29] for four-dimensional theories, and anticipated in [30] for
three-dimensional theories. The result will be essential later, in section 4, when we will
outline the procedure to find infinitesimal perturbations of solutions with no Romans mass.

In massive IIA, let us start with a metric of the form

ds2
10 = e2A7 ds2

Mink2,1
+ ds2

7 , (3.26)

where the warping factor A7 is a function of the seven internal coordinates, and the internal
metric ds2

7 is so far unrestricted. We will use the internal fluxes F as an electric basis; they
determine the external fluxes (with legs in the spacetime) via

F(10) = F + vol3 ∗7 F. (3.27)

One can get the equations for N = 1 supersymmetry with a computation similar to the one
in [31]. These equations were considered in [32] in the case without the warping, in [30,
appendix B] for the AdS4 case (which is the one we need here), and they will be presented in
general in [33]. For our present purposes, we only need to know that they include

dH (ψ−) = 0, (3.28)

where dH = d + H∧, and ψ− is part (along with a ψ+ of no relevance here) of a ‘generalized
G2 structure’ [34].

To specialize equations (3.28) to a spacetime of the form AdS4 × M6, we take

ds2
7 = e2A

μ2

dr2

r2
+ ds2

6 , eA7 = eA

μ
r, (3.29)

where A is the warping from the four-dimensional point of view (the one introduced in
section 3). We then decompose

ψ− = r2

μ2

(
−e−A Re φ− +

dr

rμ
∧ Re φ+

)
. (3.30)

With this identification (3.28) reproduces the real part of the first equation in (3.2). The rest
of (3.2) can be reproduced too, but we do not need it here.

Now, let us consider a brane that extends along the three external dimensions, and an
internal cycle B. Such a brane is supersymmetric if and only if

(X · ψ−)| = 0 ∀X ∈ T ⊕ T ∗, (3.31)

where | denotes pullback to B. This then suggests that the N = 1 superpotential is

WN=1 ∝
∫

C

ψ−, ∂C = B. (3.32)

8
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Note that this makes sense precisely because ψ− is closed (3.28). If we now consider the case
in which B is a point, we get that

d7WN=1 ∝ ψ1 = − r2

μ2
e−A Re φ1 +

1

μ3
r dr ∧ Re φ0

= 1

μ3

(
r2

2
d6 Re φ0 + r dr ∧ Re φ0

)
= 1

2μ3
d7(r

2 Re φ0). (3.33)

Using (3.11a) and the first equation in (3.18), we conclude

WN=1 = T cot(θ) (3.34)

for some proportionality constant T. As we stressed earlier, this D2 superpotential should
match the superpotential of the abelianized theory. Hence, the function cot(θ), which is one
of the data of a gravity solution, is proportional to the abelianized superpotential. This fact
should be true for a full solution, but it will be most useful in perturbation theory, as we will
now see.

4. The first-order procedure

We will illustrate here how to start from an SU(3)–structure supersymmetric solution with
F0 = 0, and perturb it to a first-order SU(3) × SU(3) solution with F0 �= 0. In section 4.1 we
will explain how to do so at the algebraic level (namely, as far as the constraints in (3.1) are
concerned), and in section 4.2 how to solve the differential equations.

4.1. Perturbing the SU(3) structure in the SU(3) × SU(3) structure

The general forms of the pure spinors for the SU(3) structure case and for the generic
SU(3) × SU(3) structure case have been given in (3.9) and (3.11). We will now explain
how to take a limit that sends one into the other.

The first thing we want to do is to send the one-form v in (3.11b) to zero, since φ− in (3.9)
has no one-form part. Calling m our first-order deformation parameter, we can write that as

v = m v0 + O(m2). (4.1)

This creates two potential problems. First, in the exponent of φ+ in (3.11a), we see that the
second term would seem to go to zero in the limit m → 0. But (3.12) implies j 3 = 0, which
means that j is degenerate; since J should be non-degenerate, we should not let the term
v ∧ v̄/2 tan2(ψ) in (3.11a) go to zero. This is accomplished by having ψ start its expansion
in m at first order:

ψ → mψ0 + O(m2). (4.2)

We should also remember that, in the SU(3) structure case, we took θ = π/2 (see (3.16));
hence, we should take

θ = π

2
+ mθ0 + O(m2). (4.3)

From the first equation in (3.18) we also see that ρ = 1 + O(m2). Summing up, for φ+ we get

φ+ = (i − mθ0) e−iJ + O(m2), (4.4)

with

J = j +
i

2
v ∧ v̄, (4.5)

9
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which is a ψ = 0 limit of (3.21). The choice (4.2) also fixes the second problem created by
(4.1): that it would have risked sending to zero the entire φ− in (3.11b). One might think that
now the five-form part will start with a term of order m−1 because of 1

sin(ψ)
in the exponent,

but that term is − 1
2m

v0ω
2, which vanishes thanks to (3.12). The next term in the expansion is

of order m, and vanishes in the m → 0 limit. The expansion of φ− hence reads

φ− = v exp

[
1

mψ0

(
iω − m2ψ2

0

2
Im ω

)]
+ O(m2)

=
(

i

ψ0
v0 ∧ ω

)
+ mv0 ∧

(
1 +

1

2
j 2

)
+ O(m2). (4.6)

In particular, at order m0, we get


 = i

ψ0
v0 ∧ ω. (4.7)

Hence v0 is a (1, 0)-form and ω0 is a (2, 0)-form with respect to the SU(3) almost complex
structure I defined by 
. This is consistent with the constraint ω2 = 0 in (3.12).

4.2. Strategy to solve the differential equations

We now move on to the differential equations for supersymmetry (3.2). All the equations in
this section and in the ones that will follow are to be understood up to orders O(m2), since we
will only solve the equations at first order in perturbation theory.

We begin by noting that, in the parameterization (3.1) of the SU(3)×SU(3) structure that
we are using, it is natural to divide the various forms according to their parity under reversal
of the angle ψ . The parity transformations of the pure spinors are

φ+ → −λ(φ̄+), φ− → −λ(φ−) (ψ → −ψ); (4.8)

recall that λ is multiplication by a sign, defined on a k-form to be λ(αk) = (−1)Int( k
2 )αk . From

(3.2), we also see that then the fluxes H, F and the warping A transform as

H → −H, F → −λ(F ), A → A (ψ → −ψ). (4.9)

We took ψ proportional to the perturbation parameter m, at first order (equation (4.2)). So at
order mk, we can consider only the forms with parity (−1)k .

We can now use the expansions in m for φ± we obtained in (4.4) and (4.6) in the differential
equations (3.2). In fact, the first equation was already analyzed beyond perturbation theory in
section 3.3, so we can just use (4.2) and (4.3) in the equations there. Using the remark above
about parity under ψ → −ψ , each of these equations will contribute either to order m0 (in
which case it should reproduce one of the equations for the SU(3) structure case (3.17)) or to
order m1.

The first equation in (3.18) is even in m. It now simply gives that ρ = 1, which reproduces
d(3A − φ) = 0 of the SU(3) structure case (see (3.15) and (3.17)). The second equation in
(3.18) is odd in m, and it gives

Re v = m Re v0 = m
eA

2μ
dθ0. (4.10)

Next, rather than reading (3.19), we can jump at the equation giving the total B-field, which is
odd in m and reads at first order:

B = m(θ0J + ψ0 Im ω). (4.11)

(3.20) is even in m and, at order m0, it simply gives the second equation in (3.17).

10
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We will now look at the expressions for the RR fluxes (the second equation in (3.2) or
(3.5)). Thanks to (4.9), we know that the equation for F2 and F6 will simply reproduce, at
order m0, the corresponding equations in (3.17), and that they will not change at order m1. In
contrast, F0 and F4 will vanish at order m0, but not at order m1. For F0, we can just use (3.25):

F0 = m(−J−1�d(e3A Im v0) − 5μ e−4Aθ0). (4.12)

We have not given the all-order formula for F4 in section 3.3. We can compute it now by using
(4.4) and (4.6) in (3.2):

F4 = e−4A ∗ (m d(eA Im v0) + 3μB). (4.13)

Finally, let us look at the Bianchi identities (the third in (3.2)). The one for F0 simply
says that it is constant. The one for F4 is

dF4 = H ∧ F2; (4.14)

recall that there is a non-vanishing F2 in the SU(3) structure solution that we want to deform,
and that H = dB and F4 are given by (4.11) and (4.13) respectively.

Note that dF0 = 0 and (4.14) are the only differential equations we have seen so far. The
others are definitions of the fields provided by the supersymmetry equations. At all orders,
there would also be equations on the geometry not involving the flux, but, at first order, we
just saw that there is no such equation.

To summarize so far, the equations we have to solve at first order in m are (4.14) and F0 in
(4.12) is constant. If one wants to have extended supersymmetry, we remarked at the end of
section 3.1 that one is actually looking for an SO(N ) worth of pure spinors, but in such a way
that the physical fields (the fluxes, the metric and the dilaton) are invariant. In that case, one
will then have to impose by hand that B, F0 and F4 in (4.11), (4.12) and (4.13) are invariant
respectively.

We will now see that there is not much freedom in solving these equations: for an assigned
field theory, no guesswork is necessary.

First of all we should remember (3.34). That equation should be true at all orders, but at
first order it just says

WN=1 = −mT θ0. (4.15)

Now, v0 follows by combining (4.10) with the fact that it is a (1, 0)-form with respect to the
almost complex structure of the SU(3)-structure solution:

v0 = eA

μ
∂θ0 (4.16)

where ∂ is the Dolbeault operator. We can now find ω and j from the data of the SU(3)
structure, J and 
 respectively. For ω, we can use (4.7) combined with the ψ → 0 limit of
(3.14); for j , we can simply invert (4.5):

ω = − i

2ψ0
v̄0�
, j = J − i

2
v ∧ v̄. (4.17)

At this point the fluxes are going to be determined via (4.11), (4.12) and (4.13); there are no
choices to be made. All one has to do is to check that the supersymmetry equations explained
earlier hold. In this sense, our procedure is algorithmic. Once one knows from field theory
arguments the right WN=1, the gravity dual is determined at first order in perturbation theory.

Let us summarize. Suppose one has a CFT3 dual to a supersymmetric SU(3) structure
AdS4 vacuum of IIA; most AdS4/CFT3 duals known are of this type. Suppose one identifies
a new conformal field theory that deforms the old one, in a way which is dual to switching
on a Romans mass; examples of such deformations were given in [12]. If the superpotential

11
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of this theory is non-vanishing even at the Abelian level, the gravity dual will be a solution of
SU(3) × SU(3) structure type, and it will be given, at first order in the Romans mass, by the
procedure outlined in the preceding paragraph.

In the next section, we will illustrate this procedure by finding the perturbative solutions
dual to the theories reviewed in section 2.

5. Perturbative solutions on AdS4 × CP
3

In this section, we will apply the procedure outlined in section 4 to the theories discussed
in section 2. We will start by reviewing briefly, in sections 5.1 and 5.2, the SU(3) structure
solution we want to deform, in two sets of coordinates convenient to our needs. In the
remaining subsections, we will find the N = 2 and N = 3 gravity duals we promised.

5.1. The N = 6 solution in homogeneous coordinates

In this section, we will review the N = 6 solution [19, 20] on AdS4 × CP
3 from the IIA point

of view.
When we discussed the differential supersymmetry conditions for SU(3) structure in

section 3.3, we found in equation (3.17) that J cannot be closed (recall that � = −3μ2).
Hence, it cannot be a Kähler form, and in particular not the usual Fubini–Study Kähler form
JFS. Also, one could not even write 
FS which is globally defined and which is (3, 0) with
respect to the usual complex structure on CP

3, since, for that complex structure, c1 = 4.
Fortunately, there are other almost complex structures on CP

3, with respect to which c1 = 0
(so that a globally defined (3, 0)-form 
 exists), and so that J is not closed. There is an S5

worth of such almost complex structures; each point in this S5 corresponds to a supersymmetry
of the N = 6 solution.

Let us start from C
4, with coordinates zA, A = 1, . . . , 4. One can think of C

4 − {0} as a
C

∗ bundle over CP
3 (with missing zero section), with projection map p. A form α on the total

space of a bundle with projection p is the pull-back of a form on the base space if and only if
it is basic, namely if it is vertical (ιvα = 0, for any v tangent to the fibers of p) and invariant
(its Lie derivative with respect to any v tangent to the fibers of p vanishes, Lvα = 0). In our
case, the forms

DzA = dzA − zA z̄B dzB

z̄CzC
=

(
δA

B − zAz̄B

z̄CzC

)
dzB ≡ P A

B dzB (5.1)

are annihilated by contraction with both vectors

r∂r = zA∂A + z̄A∂Ā, ξ = i(zA∂A − z̄A∂Ā) (r2 = zAz̄A), (5.2)

but are not basic, as we will see. We will use the projector P A
B in (5.1) to do computations

on CP
3 using coordinates of C

4.
Another way of thinking about (5.1) is the following: given a form on C

4, one can try to
define a basic form by subtracting its non-vertical part. In terms of the one-forms

r dr = 1

2
(z̄A dzA + zA dz̄A), η = i

2r2
(−z̄A dzA + zA dz̄A), (5.3)

in the case of the form dzA, this decomposition reads

dzA = DzA + zA

(
dr

r
+ iη

)
. (5.4)

12
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The one-form η is dual to ξ above, in that ιξ η = 1. We can apply the same procedure to the
standard Kähler form in C

4:

J(4) = i

2
dzA ∧ dz̄A = r dr ∧ η + r2JFS, JFS = i

2r2
DzA ∧ Dz̄A. (5.5)

The explicit expression of JFS on the right-hand side makes it clear that it is basic. One can
also see that JFS is vertical from its definition on the left-hand side, using that ιr∂r

J(4) = r2η;
using the fact that J(4) is quadratic, Lr∂r

J(4) = 2J(4), one can also see easily that

dη = 2JFS, (5.6)

which implies that JFS is also invariant under η. This JFS is the standard Fubini–Study Kähler
form on CP

3. Using the fact that JFS is vertical and (5.4), one can now see that Lr∂r
DzA = DzA

and that LξDzA = iDzA.
As we remarked earlier, however, JFS is not exactly what we need in the supersymmetry

equations. To construct the supersymmetric J, we need to introduce more data. A holomorphic
symplectic form κ in four complex dimensions is a two-form whose square gives the
holomorphic volume form 
(4):

1
2κ2 = 
(4). (5.7)

Manifolds with such a structure have been studied in the mathematical literature before, see
for example [35, section 4]. In C

4, one has an S5-worth of holomorphic symplectic forms
κ = κAB dzA dzB . From each of these, one can extract the radial and non-radial parts using
the vector r∂r and ξ , just like in (5.4) and (5.5):

κ = r(dr + irη) ∧ sκ + r2tκ . (5.8)

In components, using the forms (5.1), one can also write

sκ = 1

r2
κABzADzB, tκ = 1

2r2
κABDzA ∧ DzB. (5.9)

These forms are vertical by construction, but they are not invariant under ξ . By comparing
(5.8) with Lr∂r

κ = 2κ , one obtains

dsκ = 2(iη ∧ sκ + tκ ), (5.10)

and, from this, Lξsκ = 2isκ , Lξ tκ = 2itκ (this could also have been derived from the fact that
DzA has charge i under ξ , as pointed out after (5.6)). Similarly, if one defines a vertical form

FS by


(4) = r3(dr + irη) ∧ 
FS, (5.11)

one sees that Lξ
FS = 4i
FS (which is related to the fact that c1 = 4). In fact, by using our
definition (5.7) above, we get


FS = sκ ∧ tκ (5.12)

for any holomorphic symplectic κ . So 
FS does not define a form on CP
3.

This, however, suggests a way of defining a different three-form which is both vertical
and invariant:


κ ≡ −is̄κ ∧ tκ; (5.13)

this time Lξ
κ = 0, because the charges of s̄κ and tκ add up to zero, rather than to 4 as
for 
FS. (The factor −i has no particular meaning; it has been selected for consistency of
notation with the previous sections.) The new three-form now defines a new almost complex
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structure I, under which it is a (3, 0) form. Roughly speaking, we have just conjugated the
usual Fubini–Study complex structure in one direction out of three8.

For supersymmetry, we need to complement 
κ in (5.13) with J that obeys (3.10). If we
decompose JFS as

JFS = jκ +
i

2
sκ ∧ s̄κ , (5.14)

the remark we just made about the new almost complex structure defined by (5.13) suggests
that we define

Jκ = jκ − i

2
sκ ∧ s̄κ = JFS − isκ ∧ s̄κ . (5.15)

Note that this form is also well-defined on CP
3, because the term sκ ∧ s̄κ is invariant under η.

Using now (5.10) and some manipulations, it is not difficult to see that (3.10) and (3.17) are
satisfied by

J = Jκ, 
 = 
κ, F2 = dη = 2JFS, μ = −2, A = 0. (5.16)

Since this solution works for any holomorphic symplectic form κ (see (5.7)), and there is an
S5 worth of such forms on C

4, we conclude that this solution has N = 6.
Before we move on to the perturbative solutions, let us also remark that one can also use

homogeneous coordinates to describe the N = 1 massive solutions in [8]. One simply has to
rescale j and t by a factor of 2/σ , so that9

Jσ = R2

(
− 2

σ
j +

i

2
sκ ∧ s̄κ

)
, 
σ = R3 2i

σ
sκ ∧ t̄κ . (5.17)

The formulas for the fluxes can then be found in [8, equation (2.2)].

5.2. The T11 foliation

We present here the N = 6 solution in a different set of coordinates, first used in [37], which
are adapted to the foliation of CP

3 in T 11 = S2 × S3. These coordinates will allow us to
offer, later on, an alternative presentation of one of our solutions, the one with SO(4)×U(1)R

isometry group (discussed in section 5.3).
Before we discuss the foliation, let us review some useful forms on S2, that we will then use

on each of S2s in (5.23). In terms of the usual holomorphic coordinates on S2, z = tan
(

θ
2

)
eiφ ,

we have the one-form

e = 2dz

1 + |z|2 = eiφ(dθ + i sin θ dφ); (5.18)

the round metric is then ds2
S2 = eē, and the Kähler form J = i

2e ∧ ē. Also,

de = iA ∧ e; A = i
z dz̄ − z̄ dz

1 + |z|2 . (5.19)

In usual coordinates, A = (1 − cos θ) dφ; note that dA = JS2 . Of course globally JS2 is not
exact (it is the Kähler form of S2), and the expressions we just wrote are valid in a patch.

8
CP

3 can also be thought of as the twistor space of S4; the new almost complex structure corresponds then to
conjugation on the CP

1 fiber. This second almost complex structure makes sense on any twistor space [36].
9 In [8], the N = 6 solution is recovered for σ = 2. In this paper, we use slightly different conventions: the N = 6
solution in (5.16) is obtained by again setting σ = 2 in (5.17), followed by an additional (immaterial) conjugation
J → −J , 
 → 
̄, g → g. Also, for consistency with [8] we introduced in (5.17) the curvature radius R, which we
have set to 1 in the rest of this paper.
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Finally, note also that e and ē are related to the SU(2)-invariant forms σi on S3 via the Hopf
fibration: if one adds an angle ψ , one has

σ1 + iσ2 ≡ σ+ = eiψ ē, σ3 = dψ − A. (5.20)

These forms satisfy dσi = 1
2εijk σj ∧ σk , as appropriate for left-invariant forms on S3. Note

also that, in these conventions, the round metric on S3 with radius 1 is

ds2
S3 = 1

4σiσi = 1
4

(
ds2

S2 + (dψ − A)2
)
. (5.21)

In what follows, we will use the forms A, J, e we just introduced on each of S2, with a subscript
i , i = 1, 2, denoting which of the two S2s it refers to.

We will now discuss the T11 foliation of CP
3. From the point of view of the field theory,

this foliation exists because of a simple relation [38–40] between the moduli spaces of the
Chern–Simons-matter theory and of the four-dimensional theory with the same quiver, which
is in this case the conifold theory [41]. On the gravity side, it comes about as follows. The
splitting R

8 = R
4 × R

4 allows one to realize S7 as a fibration of S3 × S3 on a segment. We
can parameterize the segment as an angle 0 � t � π/2; the radii of the two S3s are cos(t) and
sin(t):

ds2
S7 = dt2 + cos2(t) ds2

S3
1

+ sin2(t) ds2
S3

2

= dt2 + 1
4

(
cos2(t) ds2

S2
1

+ sin2(t) ds2
S2

2
+ cos2(t)(dψ1 − A1)

2 + sin2(t)(dψ2 − A2)
2
)
.

(5.22)

We can rearrange 2ψ1 = ψ + a and 2ψ2 = ψ − a, and reduce on the angle ψ . Each of the
leaves at {t = t0} gets reduced from S3 × S3 to T 11 = S3 × S2. The reduction on ψ is nothing
but the Hopf fibration to CP

3; hence, we have realized CP
3 as a foliation whose generic leaves

are copies of T11. Even at the level of the metric we can write

ds2
CP

3 = dt2 + 1
4

(
cos2(t) ds2

S2
1

+ sin2(t) ds2
S2

2
+ sin2(t) cos2(t)(Da)2

)
, (5.23)

where

Da = da − A1 + A2; (5.24)

note that d(Da) = J2 − J1. The Fubini–Study Kähler form then reads (again in a patch)

4JFS = 1
2d[A1 + A2 − cos(2t)Da]

= cos2(t)J1 + sin2(t)J2 + sin(2t) dt ∧ Da. (5.25)

A simple basis of (1, 0)-forms for the usual complex structure IFS is 2dt + i sin(t) cos(t)Da,
cos(t)e1, sin(t)e2.

It is useful to define also

ω− = i

2
e−iae1 ∧ ē2, ω+ = i

2
eiae2 ∧ ē1, (5.26)

which are SU(2) × SU(2) invariant. Indeed, the angle a, together with the two S2s, builds up
T 11 = (SU(2)1 × SU(2)2)/U(1). On S3 × S3 we have the left-invariant forms σ 3

1,2, σ
±
1,2.

The form σ 3
1 + σ 3

2 is zero on the quotient. To make SU(2) × SU(2)-invariant forms we are
supposed to take combinations of the remaining five forms, in a way which is invariant under
the U(1) action we quotient by. Among these we find σ1 ± ∧ σ2 ∓ = ±2iω∓. Note also that
ω+ ∧ ω− = −J1 ∧ J2, and that ω± have charge ±1 under the U(1) isometry ∂a; in particular,
dω± = ±iDa ∧ ω±.

So far we have used the usual, integrable complex structure on CP
3. As we saw in

section 5.1, however, for IIA supersymmetry we need a different almost complex structure.
There, we introduced an S5 worth of SU(3) structures (Jκ,
κ) that represent the six
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supersymmetries of the Fubini–Study metric. In the coordinates we are using in this section,
only two of these SU(3) structures will be manifest (or, to be more precise, a U(1) worth of
them). Of course one can write a similar foliation in many different ways, and make manifest
the other SU(3) structures which we know to exist. In any case, the ones we will see in the
present set of coordinates will be enough to give an alternative presentation of the solution in
section 5.3. These SU(3) structures will be SO(4) invariant after the infinitesimal deformation
of section 5.3, but they actually have SO(5) invariance before the deformation.

This SO(5) invariance is present because of the existence of a fibration CP
3 → S4, with

fiber S2. We will now describe how this projection is compatible with the T11 foliation we just
saw. If a point of T11 is given as a pair of SU(2) elements (g1, g2) up to the diagonal U(1)
action on the right-hand side, there is a natural projection onto S3:

(g1, g2) → g = g1g
−1
2 . (5.27)

Note that dg g−1 = dg1g
−1
1 − g1g

−1
2 dg2g

−1
1 , so that the round metric on S3 pulls back to

Tr(dg g−1 dg g−1) = Tr
(
dg1g

−1
1 dg1g

−1
1

)
+ Tr

(
dg2g

−1
2 dg2g

−1
2

) − 2Tr
(
g−1

1 dg1g
−1
2 dg2

)
= (σ1 − σ2)i(σ1 − σ2)i, (5.28)

1,2 here refer to one of the two spheres, whereas i refers to one of the three left-invariant forms.
Hence, the pullback of the round metric on S4 of radius 2 is

ds2
S4 = dt2 + 1

4 sin2(2t) ds2
S3 = dt2 + 1

16 sin2(2t)((Da)2 + (σ1 − σ2)+(σ1 − σ2)−); (5.29)

recall that t goes from 0 to π/2. If we subtract this from (5.23), we expect to find the metric
on the S2 fiber of the fibration CP

3 → S4. We get
1
4 (cos2(t)σ1 +σ1 − + sin2(t)σ2 +σ2 − − sin2(t) cos2(t)(σ1 − σ2)+(σ1 − σ2)−)

= 1
4 (cos2(t)σ1 + + sin2(t)σ2 +)(cos2(t)σ1 − + sin2(t)σ2 −), (5.30)

which is indeed of rank 2. Locally, we can now give three holomorphic vielbeine:

E1 = dt +
i

4
sin(2t)Da,

E2 = 1

4
sin(2t)(e−ia/2e1 − eia/2e2),

E3 = 1

2

(
cos2(t) e−ia/2e1 + sin2(t) eia/2e2

)
,

(5.31)

in terms of which the Fubini–Study Kähler form can be written as

JFS = i

2
Ei ∧ Ēi . (5.32)

The almost complex structure appropriate for supersymmetry can now be found by
conjugation on the S2 fiber, as in [8] and as in section 5.1. Namely, we define the (3, 0)
form 
 to be


 = iE1 ∧ E2 ∧ Ē3

= 1

4
sin(2t)

(
dt +

i

4
sin(2t)Da

)
∧ (cos2(t)J1 − sin2(t)J2 − cos2(t)ω+ + sin2(t)ω−).

(5.33)

The two-form J is then determined to be, if one does not wish to modify the metric:

J = JFS − iE3 ∧ Ē3 = i

2

(
E1 ∧ Ē1 + E2 ∧ Ē2 + Ē3 ∧ E3

)

= 1

4

(
sin(2t) dt ∧ Da − cos(2t) cos2(t)J1 + cos(2t) sin2(t)J2 − 1

2
sin2(2t)(ω+ + ω−)

)
.

(5.34)
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We conclude this section by remarking that these coordinates can also be used, as could
the ones we saw in section 5.1, to reproduce the N = 1 solutions in [8]. The SU(3) structure
data read

Jσ = i

2
R2

(
− 2

σ
(E1 ∧ Ē1 + E2 ∧ Ē2) + E3 ∧ Ē3

)
, 
σ = −2i

σ
R3Ē1 ∧ Ē2 ∧ E3;

(5.35)

see also the comments in footnote 9.

5.3. The N = 2 solution with enhanced isometry group

In this subsection, we will apply the procedure of section 4 in detail to one of the field theories
in section 2, namely the one for which there is enhanced SU(2) × SU(2)(×SO(2)R) global
symmetry; this theory corresponds to some ci on the locus (2.4). We gave the N = 2 non-
Abelian superpotential for this theory in (2.2); the superpotential we need in (4.16) is the
Abelian N = 1 superpotential. We have to rewrite the theory in (2.1) in terms of N = 1
superfields; there will be a term, then, of the form

∫
d2θ WN=1, and this WN=1 is the one we

need to abelianize. It is a real function, with a contribution ∼Re(WN=2) and a contribution
from D-term couplings. The result can be conveniently expressed in terms of two of the
constant holomorphic symplectic forms we defined in section 5.1:

WN=1 =
(

2π

k1
+

2π

k2

)
ν2

2
, ν = i

1

r2
z̄AκABκ̃BCzC. (5.36)

Here κAB ≡ εABCDκCD , and via a change of coordinates (see equation 5.53) we take κ and κ̃

to anticommute, so that κκ̃ is antisymmetric; i in the definition of ν, then, makes sure that it is
real. We know from (4.15) that (5.36) is proportional to θ0; at this point we have not specified
what the parameter m is, and we can fix it by the choice

θ0 = 1
2ν2, (5.37)

that will be convenient later.
Recall from section 5.1 that each of the six supersymmetries corresponds to an SU(3)

structure (Jκ,
κ) associated with a holomorphic symplectic form κ via formulas (5.15) and
(5.13). Out of those six SU(3) structures, we are only interested in the two associated with the
holomorphic symplectic forms κ , κ̃ appearing in (5.36); those are the two SU(3) structures that
we want to deform into SU(3) × SU(3) structure solutions. In the following, we will deform
the SU(3) structure associated with κ; we will check at the end that one could have used κ̃

and obtained another solution to the supersymmetry equations with the same flux. These two
solutions, then, are actually a single N = 2 solution, as we explained at the end of section 3.1.

We can now turn the crank of the machine described at the end of section 4.2, specialized to
theN = 6 solution described in section 5.1. First of all (4.16) instructs us to take the Dolbeault
derivative of (5.36). This should be done with respect to the almost complex structure Iκ

associated with 
κ . For the particular superpotential in (5.36), there is a simplification.
Compute the Dolbeault derivative with respect to the Fubini–Study complex structure,

∂FSθ0 = i
ν

r2
z̄AκABκ̃BCDzC, (5.38)

where DzA was defined in (5.1). Using (5.38), one actually finds that

s̄κ�∂FSθ0 = 0; (5.39)
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this means that ∂FSθ0 does not have any component along sκ , which is the direction in which
Iκ and IFS differ by conjugation. This means, then, that

v0 = −1

2
∂θ0 = −1

2
∂FSθ0 = − iν

2r2
z̄AκABκ̃BCDzC; (5.40)

we have used A = 0, μ = −2, from (5.16).
We can now also compute, using (4.17):

ω = ν

2ψ0
s̄κ ∧ (isκ̃ + νsκ). (5.41)

Using (4.11) we can now see that

B = m
ν

2
(νJFS + Re(s̄κ ∧ sκ̃ )). (5.42)

We then find

d Im v0 = −2
i

ν2
v0 ∧ v̄0 − ν

2r2
Dz̄A ∧ κABκ̃BCDzC + ν2JFS; (5.43)

using this in (4.12), and knowing from (5.15) that

J−1
κ = J−1

FS − i
(
J−1

FS sκ

) ∧ (
J−1

FS s̄κ

)
, (5.44)

we get

F0 = m. (5.45)

In fact, in (5.37) we adjusted our choice of proportionality constant between WN=1 and θ0 so
as to get exactly (5.45). Note that comparison between (5.36), (5.37), (4.15) and (2.5) now
gives T = − 2π

k1k2
∼ 2π

k2 . It would be interesting to compute this more directly using the brane
probe logic of section 3.4.

Finally, we can compute from (4.13)

∗F4 = m
[
−2

i

ν2
v0 ∧ v̄0 − ν

2r2
Dz̄A ∧ κABκ̃BCDzC − 2ν2JFS − 3ν Re(s̄κ ∧ sκ̃ )

]
. (5.46)

We can now check whether these are the data of a solution or not. Since m is a constant, F0

is a constant; it is a bit more involved to check that F4 satisfies indeed (4.14), with F2 = JFS,
as in the N = 6 solution (see (5.16)), and with H = dB, B being given in (5.42). So this is
a supersymmetric solution. We now ask whether it is an N = 2 solution. The computation
so far consisted in perturbing the SU(3) structure (Jκ,
κ); we now have to consider what
happens if we exchange the roles of κ and κ̃ . As we remarked earlier, it is enough to check
whether the physical fields are invariant under such an exchange; this is manifestly true for B
and F4 in (5.42) and (5.46). As one expects, there is also an R-symmetry U(1)R that rotates κ

and κ̃ , and that leaves the fluxes invariant.
Hence, we have found an N = 2 solution on AdS4 × CP

3 with SU(3) × SU(3) structure,
as a perturbation of the N = 6 solution in section 5.1.

5.3.1. An alternative presentation using the T11 foliation. We can rewrite the solution we
just found, in the coordinates we worked out in section 5.2. First of all, θ0 can be written as

θ0 = 1
2 cos2(2t); (5.47)

in other words, ν = cos(2t). Since dθ0 is proportional to dt , it is also proportional to E1 + Ē1

(see (5.31)); to compute ∂θ0, it is then enough to keep the part in E1. We get

v0 = 1
2 sin(2t)E1. (5.48)
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It is then easy to find ω:

ω = − i

8ψ0
cos(2t) sin2(2t)(cos2(t)(J1 − ω+) − sin2(t)(J2 − ω−)); (5.49)

finally, the fluxes read

B = m

8
cos(2t)[sin(2t) cos(2t) dt ∧ Da − cos2(t)J1 + sin2(t)J2], (5.50)

F4 = m

[
1

2
J 2

FS − 1

16
sin3(2t) dt ∧ Da ∧ (cos2(t)J1 + sin2(t)J2)

]
, (5.51)

as well as F0 = m.

5.4. More general family (including N = 3)

We will now give a family of perturbative solutions, dual to the line of conformal field theories
reviewed in section 2.

This time, it will be convenient to start, in C
4, with three holomorphic symplectic forms

κi = κi AB dzA ∧ dzB , i = 1, 2, 3, such that

κA
i BκB

j C = −δA
Cδij − εijkκ

A
k C; (5.52)

namely, a holomorphic analog of an Sp(2) structure. One can use for example the ’t Hooft
symbols κAB

i = εi
AB

0 + 1
2εijkε

jkAB . Note that if one identified the homogeneous coordinates
with the fields in section 2 as zA = (A1, A2, B̄1, B̄2), (5.54) and (5.55) would have to be
written using κi = 12 ⊗ σi , which are hermitian but not all antisymmetric. We have preferred
changing coordinates so as to use κi in (5.52), which are all antisymmetric and can be identified
with the coefficients of three holomorphic symplectic forms. The change of basis between the
coordinates zA used in this section and the scalars of the field theory ZA = (A1, A2, B̄1, B̄2) is
then actually given by

Z1 = iz1 + z2

√
2

, Z2 = − iz3 + z4

√
2

, Z3 = −iz3 + z4

√
2

, Z4 = −iz1 + z2

√
2

. (5.53)

From each of κi we can extract a one-form sκi
≡ si and a two-form tκi

≡ ti , using (5.9). We
also introduce

νi ≡ − i

r2
z̄AκA

i BzB. (5.54)

The solution in section 5.3 will be a particular case of the family of solutions we will present
shortly, with κ = κ1, κ̃ = κ2, and ν = ν3.

Now, when c1 + c2 �= 0, the N = 1 superpotential reads

WN=1 = 1

2

((
2π

k1
+

2π

k2

)
ν2

3 + (c1 + c2)
(
ν2

2 − ν2
1

))
. (5.55)

Using the same value T = − 2π
k1k2

as in section 5.3,

θ0 = 1
2

(
ν2

3 + c
(
ν2

2 − ν2
1

)) ≡ 1
2wijνiνj , (5.56)

with

c = k1k2(c1 + c2)

2π(k1 + k2)
. (5.57)
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We again apply the perturbative procedure we outlined in section 4. It is no longer true
(as it was in section 5.3) that we can use ∂FSθ0 = ∂θ0:

v0 = −1

2
∂FSθ0 + ic

ν2
1

r2
Re(δABz̄Az̄B s1)

= i

2
wijνi z̄AκA

j BDzB + ic
ν2

1

r2
Re(δABz̄Az̄B s1). (5.58)

To proceed, we have to choose an SU(3) structure deformed by this v0. In what follows we
choose the SU(3) structure associated with the holomorphic symplectic structure κ1: namely
(J1,
1) ≡ (Jκ1 ,
κ1). We again compute, using (4.17):

ω = 1

2ψ0

[
s̄1 ∧ (iν3s2 + 2θ0 s1 − icν2s3) + ic

ν1

r2
(δABzADzB ∧ s̄1 + δABzAzBt1)

]
, (5.59)

and, using (4.11),

B = m

[
θ0JFS +

1

2
Re(s̄1 ∧ (ν3s2 − cν2s3)) +

cν1

2r2
Re(δABzA(DzB ∧ s̄1 + zB t̄1))

]
. (5.60)

Following similar steps as in section 5.3, we get

F0 = m (5.61)

and

∗F4 = m

[
i

2
wij ∂̄FSνi ∧ ∂FSνj +

1

2r2
wijνiDz̄AκA

j BDzB − 4θ0 JFS

− c

r2
Re(δABzA(−ν1DzB ∧ s̄1 − ν1z

B t̄1 + dν1 ∧ s̄1))

]
. (5.62)

These data satisfy dF4 = H ∧ F2, and hence define an N = 1 solution. As in section 5.3, the
solution has actually N = 2, because one obtains the same fluxes above if one starts from the
SU(3) structure (J2,
2) ≡ (Jκ2 ,
κ2). This is not manifest as it was in section 5.3, but still
true. Note that, for generic c, B is not invariant under exchange of κ1 and κ2: only H = dB is.

Finally, for c = 1 becomes invariant under an enhanced R-symmetry SO(3)R that rotates
κ1, κ2 and κ3. This also implies that the solution becomes N = 3. This solution corresponds
to the N = 3 field theory we saw in section 2, for the values (2.3).

In this section, we checked the existence of a one-parameter family of infinitesimal
perturbations to the N = 6 solution. It should be noted, however, that the existence of a
supersymmetric family of solutions was guaranteed by the existence of one of them, for the
following reason. The problem at first order is linear, and the difference of two solutions is a
deformation that does not change F0. Such a deformation is simply dual to a marginal operator
in the N = 6 theory, and the N = 2 superpotential of (2.2) is indeed a protected operator of
dimension 4 in that theory. In fact, by this argument, one can even find more general solutions
by adding other marginal operators of the N = 6 theory to θ0 in (5.56) (for example, any
δwij νiνj , with δwii = 0). These solutions are most probably going to disappear at higher
orders of perturbation theory, dual to the fact that they are not marginal operators in the family
of N = 2 theories of section 2. Such ‘spurious’ solutions will have N = 1 supersymmetry,
unlike the ones we presented in this section, which have N = 2 generically and N = 3 for
c = 1. This extended supersymmetry appears in a non-trivial way, and is a check of the field
theory predictions.
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